

Dependence of CYGNSS Reflectivity on Vegetation Water Content and Surface Roughness

Simon Yueh, <u>Rashmi Shah</u>, Akiko Hayashi, Andreas Colliander, Xiaolan Xu, and Julian Chaubell

Jet Propulsion Laboratory, California Institute of Technology IEEE GNSS+R, May 20-22, 2019

© 2019. California Institute of Technology. Government sponsorship acknowledged.

Objectives

- Develop soil moisture (SM) retrieval algorithms using CYGNSS data along with ancillary datasets used by the SMAP mission processing system to produce a CYGNSS soil moisture product with the best consistency with the SMAP soil moisture;
- Leverage the established SMAP cal/val program to quantify the accuracy and spatial resolution of the CYGNSS products with error budget tables.

Outline

- SMAP-CYGNSS Matchup
- Vegetation Dependence
- Surface Roughness Dependence
- Summary

CYGNSS-SMAP Match Up

- CYGNSS data
 - Version 2.1
 - Level 1 data
 - Flags: Most of the quality flags are checked for
 - Excluding all Block IIF GPS s/c
- SMAP Data
 - SCAV Soil moisture < 5 kg/m²
 - Gridded NDVI VWC
 - Surface roughness (baseline and DCA h)
- CYGNSS-SMAP data match up
 - Distance: within 15 km
 - Time: within 1 day

$\Gamma(\theta) = \frac{(4\pi)^2 (P_r - N)(R_t + R_r)^2}{\lambda^2 P_t G_t G_r}$

ty, and
$$\lambda$$
 is GPS wavele

CYGNSS Reflectivity Calculation

Assuming a radar equation for a coherent signal similar to [1]:

$$P_r^S = P_r - N = \Gamma(\theta) \frac{\lambda^2 P_t G_t G_r}{(4\pi)^2 (R_t + R_r)^2}$$

where

- P_r^S is the received power reflected by the surface,
- P_r is the peak power of the L1 DDM of reflected power,
- N is the estimated noise floor.
- P_tG_t is GPS Equivalent Isotropically Radiated Power (EIRP),
- G_r is antenna gain towards the specular point,
- R_t is the distance between transmitter and specular point,
- R_r is the distance between receiver and specular point,
- $\Gamma(\theta)$ is the average reflectivity ength (19 cm).
- Average reflectivity can then be computed:

[1] Clarizia et al., 2018

Jet Propulsion L

CYGNSS Reflectivity

3-day: Sept 30-Oct 2, 2017

CYGNSS Reflectivity vs. SMAP SM & VWC

Soil Moisture for Various Incidence Angles

9/23/2019

Effect of VWC & Soil Moisture

Incidence Angles 00-60 0 SMAP VWC 0.00-1.00 SMAP VWC 1.00-2.00 MAP VWC 2.00-3.00 -5 SMAP VWC 3.00-4.00 -10 Reflectivity [dB] -12 05--25 -30 -35 LL 0.0 0.2 0.3 0.1 0.4 0.5 0.6 Soil Moisture cm³/cm³

Effect of VWC & Incidence Angle

Data are stratified into every 10 degrees in incidence angles

Similar features for all incidence angle bins.

Dependence on VWC for SM of 0.2

Figure 4. Summary of experimental data of the vegetation parameter b as a function of wavelength for a variety of vegetation types.

Linear Model for NDVI tau appears reasonable

 $R_{\tau\theta} = -20\log_{10}(e)\frac{VWC}{\cos\theta}b + R_{\theta}$

	10-20	20-30	30-40	40-50	50-60	Average
b	0.17	0.17	0.17	0.15	0.11	0.15

9/23/2019

IEEE GNSS+R 2019

Jet Propulsion Laboratory California Institute of Technology

CYGNSS Reflectivity vs. SMAP SM & **Baseline Surface Roughness Ancillary**

Surface Roughness Derived from SMAP Dual-Pol Data

- Use Dual Channel Algorithm: Retrieved soil moisture and h by letting tau = NDVI tau
- Include Q = 0.1771*h to represent polarization mixing
- Averaged h map on 3 and 9 km grids (NDVI tau threshold applied)
- Dual Channel Algorithm (DCA)

Surface Roughness From SMAP Dual Channel Algorithm

DCA Surface Roughness Example

SMAP soil moisture using baseline surface roughness DCA SM - R16020

DCA Surface Roughness removes some artifacts due to topography from SMAP soil moisture retrieval

9/23/2019

CYGNSS Reflectivity vs. SMAP SM & DCA roughness (H)

Dependence of Reflectivity on Surface Roughness

$$R_{h\theta} = e^{-aH}R_{\theta}$$

$$R_{h\theta} = -10 \log_{10}(e) a H + R_{\theta}$$

Incidence Angle (deg)	Slope	а
15	-9.04	2.08
25	-10.78	2.48
35	-11.25	2.59
45	-11.23	2.59
55	-8.24	1.90

- No obvious dependence on incidence angle
 - Large scale random surface dominates?
- Linear dependence on h
- Non-Rayleigh slope should be ~ –(2khcosθ)²

CYGNSS Reflectivity vs. SMAP SM

IEEE GNSS+R 2019

Summary

- Characteristics of CYGNSS reflectivity reflect the change of SMAP soil moisture and NDVI-derived optical depth (tau).
- SMAP baseline surface roughness is inconsistent with CYGNSS reflectivity.
- CYGNSS reflectivity is correlated with SMAP DCA surface roughness.
- CYGNSS dependence on soil moisture cannot be fully modeled by the Mironov dielectric model and empirical SMAP surface roughness.
 - There is 7 dB residual for wet soil (>0.2 volumetric moisture).

Dependence of CYGNSS Reflectivity on Vegetation Water Content and Surface Roughness

Simon Yueh, <u>Rashmi Shah</u>, Akiko Hayashi, Andreas Colliander, Xiaolan Xu, and Julian Chaubell

Jet Propulsion Laboratory, California Institute of Technology IEEE GNSS+R, May 20-22, 2019

© 2019. California Institute of Technology. Government sponsorship acknowledged.